ECE444: Software Engineering

UML, OOP, Design Pattern 1

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

Learning Goals

* Understand UML
* Understand OOP
* Understand what drives design

* Understand information hiding

Introduction to Software Design

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Goal of Software Design

* For each desired program behavior there are infinitely many
programs that have this behavior

e What are the differences between the variants?
e Which variant should we choose?

* Since we usually have to synthesize rather than choose the solution...
 How can we design a variant that has the desired properties?

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

A typical Intro of CS designh process

1. Discuss software that needs to be written

2. Write some code
3. Test the code to identify the defects

4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

A Better Software Design

* Think before coding: broadly consider quality attributes
— Maintainability, extensibility, performance,
* Propose, consider design alternatives

— Make explicit design decision

The Edward S. Rog SD}
‘ofElect cal & Cor } t Eng

IlU
% UNTYERSITY G TORONTO

Using a Design Process

* A design process organizes your work
* A design process structures your understanding

* A design process facilitates communication

’fi}i The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?sg UNIVERSITY OF TORONTO

Why a Design Process?

* Without a process, how do you know what to do?

—A process tells you what is the next thing you should be doing
* A process structures learning

—We can discuss individual steps in isolation

—You can practice individual steps, too
* If you follow a process, we can help you better

—You can show us what steps you have done

—We can target our advice to where you are stuck

&% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

VERSITY OF TORON"}O

¢ Design goals enable evaluation of designs

— e.g. maintainability, reusability, scalability

¢ Design principles are heuristics that describe best practices
—e.g. high correspondence to real-world concepts

¢ Design patterns codify repeated experiences, common solutions

—e.g. template method pattern

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

e Abstraction
* Encapsulation
* Inheritance

* Polymorphism

’fﬁé The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

OOQOP - Abstraction

"shows" only essential attributes and "hides" unnecessary
information.

* Think about a banking application, you are asked to collect all the
information about your customer. & Full Name

~ Address

~ Contact Number

~ Tax Information Al
~ Favorite Food :o%";
~ Favorite Movie & barking

~ Favorite Actor R
& Favorite Band |

& The Ei ard S. Rogers Sr. L)}

\- of Electrical & Computer Eng
X UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

 Abstraction

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Modularity
* Hierarchy

’fﬁé The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

OOP - Encapsulation Methods [Variables

Class

* A class is an example of encapsulation as it encapsulates all the data
that is member functions, variables, etc.

* Consider a real-life example, in a company:

Object

> Interaction
Interface

Finance Sales
section section

Public Methods

vl

Private Data
Private Methods

Sale officer
(Obj)

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

Difference between Abstraction and Encapsulation

Abstraction Encapsulation

Abstraction solves the issues at the design Encapsulation solves it implementation level.
level.

Abstraction is about hiding unwanted details Encapsulation means binding the code and
while showing most essential information. data into a single unit.

Abstraction allows focussing on what the Encapsulation means hiding the internal
information object must contain details or mechanics of how an object does

something for security reasons.

dward S. Rogers Sr. Department
ectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

* Abstraction "shows" only essential attributes and "hides"
unnecessary information.

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

* Polymorphism

’fi}j The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

edureka!

Types Of Inheritance

Single Inheritance Multilevel Inheritance Hierarchical Inheritance Multiple Inheritance

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

“ 9% UNIVERSITY OF TORONTO

Fundamental Object-Oriented Design Principle

* Abstraction "shows" only essential attributes and "hides"
unnecessary information.

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

[* Polymorphism a property of an object which allows it to take muItipIeJ

forms.

?fi},? The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

OOP - Polymorphism

* a property of an object which allows it to take multiple forms.

4 # len() being used for a string 4 def add(x, y, z = 0):

5 print(len("geeks")) o) return x + y+z
6 6

7 # len() being used for a list 7 # Driver code

8 print(len([10, 20, 30])) 8 print(add(z, 3))

' print(add(2, 3, 4))

O

Output:
5 5

lectrical & Computer Engineering

OF TORONTO

5 ectr:
%Z?:a UNIVERSITY

OOP

* Abstraction "shows" only essential attributes and "hides"
unnecessary information.

* Encapsulation bundling data and methods that work on that data
within one unit, e.g., a class in Java.

* Inheritance inheriting or transfer of characteristics from parent to
child class without any modification”

* Polymorphism a property of an object which allows it to take multiple
forms.

Modeling Notations

* Used for both requirements analysis and for specification and design
» Useful for technical people
Provide a high-level view
Descendent of Entity-Relationship Diagrams
Describes data and operations
Require training
Many notations
* each good for something
* none good for everything

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IIU
% UNIVERSITY e TORONTO

Grady Booch

Origin of UML

Grady Booch Diagrams +
Jim Rumbaugh (OMT) Object Diagrams +
lvar Jacobson use case diagrams

Jim Rumbaugh lvar Jacobson

{15’"% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

%g UNIVERSITY OF TORONTO

10 11

Jan Sep
Before 95° ‘95 ‘96 ‘97 ‘97 ‘98 ‘99 ‘01 ‘05 ‘06 ‘09
@
)
g ~
£ o
Other 50 : - —
Methodologies 5 & © =~ &§ ® § o =~ & ® ¥ 14
g 5 - - - 5 - Y § ¥ 5§ g 75
s § § § § § § s s s §5 s s
S = S S S > = S =) > > =) >
Grady HE E E E EEEEE NN NGB
Jim Rumbaugh Ilvar Pariner’s RTF (Revision Task Force)
Expertise
99’ - Indusirialization

(OMT)
Jacobson
=

> 98 - Standardization

» 95 - Unification

Before 95 - Fragmentation

he H
Electrical & Computer Engineering

VERSITY OF TORONTO

Usage of UML

* Help developers communicate
* Provide documentation

* Help find errors (tools check for consistency)
* Generate code (with tools)
* Drawing Tools: ArgoUML, Visio (Microsoft), OmniGraffle

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Types of UML

* Behavioral UML Diagram
* Structural UML Diagram

Behavioral UML Diagram - Activity Diagram

* The dynamic nature of a system by forming the flow of
control from activity to activity

Receive Verify
order inventory
verified
Just a
reminder... .
approved response

not
verified

Notify
Customer

Alternate
’fi}i The Edward S. Rogers Sr. Department Confirm
of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Behavioral UML Diagram — Use Case Diagram

uc Use Cases)

System Boundary

<extend¥> Order

e Actor + Action % aceivk orer

Wine
Vit er\ confi er
place/frder
Serve Cook T~
Food Food
| \N C hef

<<extendd> {ifwine was ordered}

Eat 2< extend>/#
Food {if wine
,uSt (o | C Iieni\ was
. served}
reminder...

ﬁ:t\a e paym ent
<<extend>>
ept

® acq Pay for <_{if_"" iﬂe_ Pay for
® paym ent Food was Wine
Cashier consumed}

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Behavioral UML Diagram - Sequence Diagram

* The time sequence of the objects participating in the
Interaction

Security e Image

e Agent Analyst

hold pose

initiate scan

scan complete —‘ process.image

Just a release pose reportresult
reminder... read’result H

System Boundary

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Behavioral UML Diagram — State Diagram

* possible states that an object of interaction goes through
when an event occurs.

processmgAuponPassenged

Verify Get
reservation preferences

Issue with reservation

Receive baggage
and print receipts

No baggage

Give passenger
travel documents

Behavioral UML Diagram — Communication Diagram

* Focus on the messages
that are exchanged
between the objects.

e Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

f r name of owning element

- > > % -~

. rame heading or enclosing namespace diagram frame
diagram kind —

L

N r ~
interaction Online Bookshop)
!Inventory
guard
messgage f
) 2.3 [order complete]:
1.1: search() .
sequence f update_inventory()
expression iteration lifeline class
'\ / 1.2 [interested): @M€ name
Y ¥ view_book() \
o 1 *: find_books() —= Y YV
ifeline b: Book
N > :Online
g Bookshop A
= 1.3 [decided tobuy]: _ iiine
2 checkout() add_to_cart() o
\ N\ /selector
2.2 [not empty(cart)]: 2.1: get_books() .
4 make_order() - sc[cugomer].
Shopping Cart
sequence
expression :Order -4»__<\
lifeline © uml-diagrams.org

Types of UML

* Behavioral UML Diagram
_* Structural UML Diagram >

Structural UML Diagram - Class Diagram

Multiplicity _
I Aggregation
Class |
| . , Role
| ord
; | dale : date | : OrderDotail Itom
Cosomer | | s A = -shippingWeight
Affribute = = »|[name:Sking ! ::;':7::) éim-lm‘. -taxStatus : String -description : String
-acdress b0 akTax) T+ |ecakcSubTotak) - -

ax()
| scaic Totak) m) ?.n')
| +calc TotalWeight() o nStock(

Association Operation
g o
Abstract Class = = s Peyment
-amount : float
Jal
Generalization = = «»
Cash Check Crodit
-cashTendered : ficat -name : Sting -number : Steng
-bank|D : String -type : String

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Structural UML Diagram - Package Diagram

* Package UML diagrams bring
together the elements of a
system into related groups to
reduce dependencies
between sets.

$#2 The Edward S. Rogers St. Department
& | of Electrical & Computer Engineering

g?:gz UNIVERSITY OF TORONTO

Layered Application
_I _I
Presentation Layer Services Layer —I
e External
T _U]”' Intedace _lrmmm _U]:u Intedace —Fl»amm < Systems
Logic Logic
P v
I \;/ -------------------- \;/ ------------ “. _l Cross Cutting
|
Business Layer . _I
_l > Socurlty
Applcation
:. e T I et :
: ->
_I _] _l Operational
Susiness Busness Business Management
Workfiow Components Entities
T >]
v Commanicaion
[]
Data Layer
] 0
Data Access Service Agents

Elements of UML Class Diagram

Multiplicity |
- | Aggregation
° Cl TSS I l Role
dSS : o
but ! I e | I OrderDetail itom
e attributes Customer | :: v v R : [
. Attribute — — » [name: Sting T — R T B e e
* operations [: it scaicWesght() sgelTax()
. . | scaic TotaWeight() scalcTax() +inStock()
* Associations Association ot
peration
* multiplicity
: : i Abstract Class — B
* direction/aggregation/ stract Class B
° Generallzatlon Generalization = - -»A
Cash Check Credit
-cashTendered : ficat -name : Sting -number : Stang
-bankID : String -type : String
sauthorzed() -opDete

e Edward S. Rog SD} artment
Electrical & Cor }t r Eng g

”é« UNIVERSITY OF TORONTO

Class

* class name
* class attributes [attribute name : type]

* class methods [parameter: type]

BankAccount

-owner : String
-balance : Double = 0.0

+deposit (amount : Double)
-withdraw (amount : Double)

public + | anywhere in the program and
may be called by any object
within the system

private - | the class that defines it

protected | # | (a) the class that defines it or

(b) a subclass of that class

Relationships

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

 XOAvAAY

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

Association

Objects of ClassA MAY
know about a single
object of ClassB

Objects of ClassA MUST
know about a single
object of ClassB

Objects of ClassA MUST
know at least one object
of ClassB

ClassA ClassB
0.1

ClassA ClassB

1

ClassA ClassB
1.7

ClassA ClassB
0.*

Objects of ClassA MAY
know about many objects
of ClassB

)) LV

Multiplicity

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

%, UNIVERSITY OF TORONTO

Attributes vs Associations

Claim Image Plan
. 01 Claim)
ID: String -
0.1 date: Date *

Procedure Provider
name: String * name: String
supplles: String address: String
price: Integer phone: String

Inheritance

Animal

+age : Int
+gender: String

+isMammal ()
+mate()

Duck

Fish

+beakColor : String = “yellow”

+swim()
+quack()

-sizelnFt : Int
-canEat : Boolean

Zebra

+is_wild : Boolean

-swim()

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

+run()

Realization/Implementation

<<interface>> Movable

+moveUp() :void

+moveDown () :void
+moveleft():void
+moveRight():void
T Tttt T T T T """"""""""".
MovablePoint MovableCircle
~x:int 1 -radius:int
~y:int <> -center:MovablePoint
~xSpeed:int . . .
Xopee .}n +MovableCircle(x:int,y:int
~ySpeed:int . .
xSpeed:int,ySpeed: int,
+MovablePoint(x:int,y:int, radius:int)
xSpeed:int,ySpeed:int) +toString():String
+toString():String +moveUp() :void
+moveUp() :void +moveDown () :void
+moveDown () :void +moveleft():void
+moveleft():void +moveRight():void
+moveRight():void

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

“‘ 9% UNIVERSITY OF TORONTO

Aggregation

° (lhas a”
* “Is part of”

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Composition

Human

tname : String
tage : Int

Heart

+isHealthy : Bool

o o—

+speak()

"iﬁré The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

+pumpBlood()

VVV

\%

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

5‘% UNIVERSITY OF TORONTO

Multiplicity S

Implementation

. K | tC h en ‘ Composition

Bath > Room

House

¢ ¢4

Bedroom
0

% |

Mortgage

1
Mailbox

"i‘i{'s? The Edward S. Rogers Sr. Department

[l of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

OO modeling points

* Class name should be nouns
* Verbs become operations

’f} TlEi ‘]R ts Sr. Depart

‘ f Electrical & puter Enumeetino
’9 UNIVERSITY OF TORONTO

Analysis vs Design

* Class diagrams are used in both analysis and design

* Analysis - conceptual
* model problem, not software solution
* caninclude actors outside system

* Design - specification
* tells how the system should act

* Design — implementation
e actual classes of implementation

Class Diagram

Central model for OO systems

I Describes data and behavior
I In UML, is used along with Use Cases and

Packages for analysis

I Is also used to describe implementation
I Don’t confuse analysis and implementation!

Don’t add all implementation details

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Readings

* More UML resources

* http://dn.codegear.com/article/31863

* http://www.sparxsystems.com.au/

e UML_Tutorial.htm
http://www.gnome.org/projects/dia/umltut/index.html

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

http://dn.codegear.com/article/31863

History of Patterns

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

Copyrighted Material

A Pattern Language

Towns -Buildings - Construction

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm

<
<

 Elements of Reusable
Object-Oriented
Software

Christopher Alexander Ralph Johnson
Sara Ishikawa - Murray Silverstein John Vlissides ¢ 2 3 O O p atte ns
WITH

Max Jacobson -Ingrid Fiksdahl-King
Shlomo Angel

DONILNAWOD TYNOISSIHO¥d AFT1SIM-NOSIAAY

SA1¥3S

Cover st O 19 M C_ Escher / C Ast - Baam - Holland. Al rights reservexd.

Foreword by Grady Booch

Copyrighted Material

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘?&.5‘”“ UNIVERSITY OF TORON"}O

Design Patterns

* When used strategically, they can make a programmer significantly
more efficient by allowing them to avoid reinventing the proverbial
wheel, instead using methods refined by others already

* Provide a useful common language to conceptualize repeated
problems and solutions when discussing with others or managing

code in larger teams.

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Criticism of Design Patterns

* Kludges for a weak programming language

Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.

* Inefficient solutions

Patterns try to systematize approaches that are already widely used.
* Unjustified use

If all you have is a hammer, everything looks like a nail.

%*i‘fr,? The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

n Liskov substitution principle

Interface segregation
principle

2 . Dependency inversion
L principle

OO Design Principles

CARL QUIT. HES THE
ONLY ONE WHO KNOWS
HOW TO PROGRAM THE

LEGACY SYSTEM.

IT CANT BE THAT
HARD. GO FIGURE IT

scottadams@aol.com

www.dilbert.com

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Single Responsibility Principle

A class should have one, and only one, reason to change.
Just because you can, doesn’t mean you should

Clean Code

A Handbook of Agile Software Craftsmanship

Benefits:
* Frequency and Effects of Changes

e Easier to Understand ‘

Q: What is the responsibility of your
class/component/microservice?

’fﬁé The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Single Responsibility Principle l/&ﬂl

A class should have one, and only one, reason to change.

Coglelz)li:i[tlfynal Rectangle Graphical
+ draw() L
Application —> «— Application
+area():double

GUI <

{:’%? The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

%’a‘“ UNIVERSITY OF TORON"}O

Single Responsibility Principle l/ﬂ

Computational
Geometry
Application

Graphical
Application

V V V

Geometric = Rectangle
Rectangle = GUI

+area():double +draw()

{15’"% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

‘%g; UNIVERSITY OF TORONTO

Corresponding Design Patterns

* Proxy

/

Warehouse

p—]

Payment

\

——

a @, N \Processing
A Zy <|:|> Packaging e

Suppliers

Delivery

«interface»
Payment

+ pay(amount)

CreditCard

Taxes >

Cash

OO Design Principles

Single responsibility
principle

Open/closed principle

) Liskov substitution principle

Interface segregation
principle

‘»m . Dependency inversion
principle

Open-Closed Principle (OCP)

e Software entities should be open for extension, but closed for modification.

DID YOU KNOW THESE |T GUYS COPIED
MY IDEA OF EXTENSIBILITY [

’
‘.
/)N
-
-

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Open-Closed Principle

* Implementation:
* inheritance
e composition

e Benefits:

* extend a component’s logic without
breaking backward compatibility

* test different component
implementations (that have the same
logic) against each other.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

https://stackify.com/oop-concept-inheritance/
https://stackify.com/oop-concepts-composition/

Thoughts? Critigues on OCP

* Adding un-needed flexibility to code (to make it open for extension)
breeds complexity and carrying cost.

* It requires imagining all sorts of use-cases that don’t exist in order to
make it ultimately flexible.

* Principle !=you should always do this

’fi}i The Edward S. Rogers Sr. Department
i | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Corresponding Design Patterns

* Strategy

e Simple Factory

* Factory Method
* Abstract Factory
* Builder

* Bridge

* Facade

* Mediator

’fﬁé The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

