
ECE444: Software Engineering

UML, OOP, Design Pattern 1

Shurui Zhou

Learning Goals

• Understand UML
• Understand OOP
• Understand what drives design
• Understand information hiding

Introduction to Software Design

• For each desired program behavior there are infinitely many
programs that have this behavior
• What are the differences between the variants?
• Which variant should we choose?

• Since we usually have to synthesize rather than choose the solution…
• How can we design a variant that has the desired properties?

Goal of Software Design

A typical Intro of CS design process

1. Discuss software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

A Better Software Design

• Think before coding: broadly consider quality attributes
– Maintainability, extensibility, performance, …

• Propose, consider design alternatives
– Make explicit design decision

Using a Design Process

• A design process organizes your work

• A design process structures your understanding
• A design process facilitates communication

Why a Design Process?
• Without a process, how do you know what to do?

–A process tells you what is the next thing you should be doing
• A process structures learning

–We can discuss individual steps in isolation
–You can practice individual steps, too

• If you follow a process, we can help you better
–You can show us what steps you have done
–We can target our advice to where you are stuck

• Design goals enable evaluation of designs

– e.g. maintainability, reusability, scalability

• Design principles are heuristics that describe best practices

– e.g. high correspondence to real-world concepts

• Design patterns codify repeated experiences, common solutions

– e.g. template method pattern

• Abstraction
• Encapsulation
• Inheritance
• Polymorphism

Fundamental Object-Oriented Design Principle

OOP - Abstraction

• "shows" only essential attributes and "hides" unnecessary
information.
• Think about a banking application, you are asked to collect all the

information about your customer.

• Abstraction
• Encapsulation bundling data and methods that work on that data

within one unit, e.g., a class in Java.
• Modularity
• Hierarchy

Fundamental Object-Oriented Design Principle

OOP - Encapsulation

• A class is an example of encapsulation as it encapsulates all the data
that is member functions, variables, etc.
• Consider a real-life example, in a company:

Finance
section

Sales
section

Sale officer
(Obj)

Fundamental Object-Oriented Design Principle

• Abstraction "shows" only essential attributes and "hides"
unnecessary information.
• Encapsulation bundling data and methods that work on that data

within one unit, e.g., a class in Java.
• Inheritance inheriting or transfer of characteristics from parent to

child class without any modification”
• Polymorphism

Fundamental Object-Oriented Design Principle

• Abstraction "shows" only essential attributes and "hides"
unnecessary information.
• Encapsulation bundling data and methods that work on that data

within one unit, e.g., a class in Java.
• Inheritance inheriting or transfer of characteristics from parent to

child class without any modification”
• Polymorphism a property of an object which allows it to take multiple

forms.

Fundamental Object-Oriented Design Principle

OOP - Polymorphism

• a property of an object which allows it to take multiple forms.

• Abstraction "shows" only essential attributes and "hides"
unnecessary information.
• Encapsulation bundling data and methods that work on that data

within one unit, e.g., a class in Java.
• Inheritance inheriting or transfer of characteristics from parent to

child class without any modification”
• Polymorphism a property of an object which allows it to take multiple

forms.

OOP

Modeling Notations

• Used for both requirements analysis and for specification and design
• Useful for technical people
• Provide a high-level view
• Descendent of Entity-Relationship Diagrams
• Describes data and operations
• Require training
• Many notations
• each good for something
• none good for everything

Origin of UML

Grady Booch Diagrams +
Jim Rumbaugh (OMT) Object Diagrams +
Ivar Jacobson use case diagrams

Ivar Jacobson Jim Rumbaugh

Three Amigos

UML Timeline

Usage of UML

• Help developers communicate
• Provide documentation
• Help find errors (tools check for consistency)
• Generate code (with tools)
• Drawing Tools: ArgoUML, Visio (Microsoft), OmniGraffle

Types of UML

• Behavioral UML Diagram
• Structural UML Diagram

Behavioral UML Diagram - Activity Diagram

• The dynamic nature of a system by forming the flow of
control from activity to activity

Behavioral UML Diagram – Use Case Diagram

• Actor + Action

Behavioral UML Diagram - Sequence Diagram
• The time sequence of the objects participating in the

interaction

Behavioral UML Diagram – State Diagram

• possible states that an object of interaction goes through
when an event occurs.

Behavioral UML Diagram – Communication Diagram

• Focus on the messages
that are exchanged
between the objects.

Types of UML

• Behavioral UML Diagram
• Structural UML Diagram

Structural UML Diagram - Class Diagram

Structural UML Diagram - Package Diagram

• Package UML diagrams bring
together the elements of a
system into related groups to
reduce dependencies
between sets.

Elements of UML Class Diagram

• Class
• attributes
• operations

• Associations
• multiplicity
• direction/aggregation/

• Generalization

Class

• class name
• class attributes [attribute name : type]
• class methods [parameter: type]

Relationships

Association

Multiplicity

Attributes vs Associations

Inheritance

Realization/Implementation

Aggregation

• “has a”
• “is part of”

Composition

Multiplicity

OO modeling points

• Class name should be nouns
• Verbs become operations

Analysis vs Design

• Class diagrams are used in both analysis and design
• Analysis - conceptual
• model problem, not software solution
• can include actors outside system

• Design - specification
• tells how the system should act

• Design – implementation
• actual classes of implementation

Class Diagram

Central model for OO systems
❚ Describes data and behavior
❚ In UML, is used along with Use Cases and

Packages for analysis
❚ Is also used to describe implementation
❚ Don’t confuse analysis and implementation!

Don’t add all implementation details

Readings

• More UML resources
• http://dn.codegear.com/article/31863
• http://www.sparxsystems.com.au/
• UML_Tutorial.htm

http://www.gnome.org/projects/dia/umltut/index.html

http://dn.codegear.com/article/31863

History of Patterns

• Elements of Reusable
Object-Oriented
Software
• 23 OO patterns

Design Patterns

• When used strategically, they can make a programmer significantly
more efficient by allowing them to avoid reinventing the proverbial
wheel, instead using methods refined by others already
• Provide a useful common language to conceptualize repeated

problems and solutions when discussing with others or managing
code in larger teams.

• Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

Classification of patterns

Criticism of Design Patterns
• Kludges for a weak programming language
Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.
• Inefficient solutions
Patterns try to systematize approaches that are already widely used.
• Unjustified use
If all you have is a hammer, everything looks like a nail.

OO Design Principles

OO Design Principles

Single Responsibility Principle

Benefits:
• Frequency and Effects of Changes
• Easier to Understand

Q: What is the responsibility of your
class/component/microservice?

A class should have one, and only one, reason to change.
Just because you can, doesn’t mean you should

Single Responsibility Principle

A class should have one, and only one, reason to change.

Single Responsibility Principle

Corresponding Design Patterns

• Façade

• Proxy

OO Design Principles

Open-Closed Principle (OCP)

• Software entities should be open for extension, but closed for modification.

Open-Closed Principle
• Implementation:
• inheritance
• composition

• Benefits:
• extend a component’s logic without

breaking backward compatibility
• test different component

implementations (that have the same
logic) against each other.

https://stackify.com/oop-concept-inheritance/
https://stackify.com/oop-concepts-composition/

Thoughts? Critiques on OCP

• Adding un-needed flexibility to code (to make it open for extension)
breeds complexity and carrying cost.
• It requires imagining all sorts of use-cases that don’t exist in order to

make it ultimately flexible.
• Principle != you should always do this

Corresponding Design Patterns

• Strategy
• Simple Factory
• Factory Method
• Abstract Factory
• Builder
• Bridge
• Façade
• Mediator

